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Abstract

The uncertainty principle states that there is an inverse re-
lation between bandwidth and spatial resolution. High band-
width radars require expensive electronics and greater power,
making them prohibitive for mote scale systems. Yet many
applications need fine-grain resolution. In this paper, we
address these contradictory requirements in the context of
low power Pulse Doppler Radars, where the uncertainty is
in terms of ambiguity in their absolute range information.
We show that the phase of the radar returns provides non-
traditional resolution information, on the scale of the wave-
length, and the wavelength can be affordably made an or-
der of magnitude finer than the traditional resolution of these
systems. Paradoxically this phase information provides fine
scale range information while still exhibiting ambiguity in
coarse scale range information. Nevertheless, we show how
to process the information to obtain much finer scale relative
motion profiles than would be suggested by the uncertainty
principle.

If the number of targets is small this processing can be
accomplished with very simple —i.e., mote scale— algo-
rithms. Specifically, a sequence of phase measurements can
be unwrapped to directly yield an estimation of the relative
motion trajectory. In the presence of noise, phase unwrap-
ping errors create a multi-modal error distribution that must
be considered in the design of algorithms and applications
that exploit this result. We show that while more sophisti-
cated algorithms can greatly reduce the frequency of phase
unwrapping errors, even the simplest of phase unwrapping
algorithms yields results that are easily exploited for many
classification and tracking tasks that could not be performed
with lower resolution sensors. As examples, we show a
method for differentiating humans walking through a scene
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from bushes blowing in the wind by estimating the total dis-
placement of the target, and a method for accurate network-
based tracking of moving objects.
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1 Context

There is significant interest in low power Wireless Sen-
sor Networks (WSNs) [1]. An important economic and op-
erational need is the need to operate the WSN nodes using
affordable battery technology. Simple analysis of this con-
straint reveals a severe tradeoff between system life and av-
erage power consumption, which is illustrated in Figure 1.
Although in situ energy harvesting may in time substantially
reduce the severity of this tradeoff (see [2] & [3]), it still
seems likely that there will continue to be strong interest in
WSNs where the nodes consume on the order of 10 mW. The
class of WSN nodes called motes [1], operate approximately
in this power regime, and are the focus of this paper.

Figure 1. System life for various sized batteries.



A key obstacle to maturation of mote-scale WSNs is that
they continue to struggle to overcome the limitations im-
posed by relatively low capability sensors. Typical mote-
scale sensors include:

• Point sensors such as temperature, humidity, pressure,
and light levels.

• Passive spatial and motion sensors, such as Pyroelec-
tric Infrared (PIR) motion sensors, acoustic sensors, and
still shot photo sensors.

• Active sensors, notably active ultrasound sensors and
Doppler Radars.

But with few exceptions these choices offer relatively lim-
ited information content. The limitations of the information
content of the available mote scale sensors has impeded the
preciseness of many natural applications, such as tracking
individuals moving through a WSN. In detection oriented
applications, such as monitoring for perimeter protection or
border patrol, the sparsity of information provided by mote-
scale sensors significantly exacerbates the false alarm prob-
lem. It is anticipated that there would be many benefits to
using sensors with richer information content in mote-scale
WSNs. Entirely new classes of applications based on better
classification might be invented. Unfortunately it is difficult
to provide information rich mote-scale sensors. The key dif-
ficulty is usually power but may also include cost, and, on
rare occasion, size.

This paper focuses on this tension as it applies to Pulsed
Doppler Radars (PDRs). There is a secondary tension be-
tween the potential of higher resolution and the cost of elec-
tronics. But the core tension is between the information po-
tential of higher resolution and the power required to attain
higher resolution. This tension is fundamentally related to
uncertainty principle which implies that greater resolution
requires greater bandwidth, which in tern requires higher
power (and more expensive) electronics.

Here we refer to the uncertainty principle as used in sam-
pling theory (rather than the mathematically related uncer-
tainty principle from quantum mechanics). There are many
different formulations of the uncertainty principle; the ver-
sion that seems most relevant, stated in [4], is that is that for
any finite energy waveform, for a particular measure the vari-
ance of the waveform in time, denoted here by ∆sig , and for
a similarly defined measure of the variance of the frequency,
∆f,

∆sig≥ 1
2∆f

The temporal variance of the waveform directly affects the
accuracy with which the time shift of the waveform may be
robustly estimated. In the absence of noise it is possible to
estimate the time offset of a signal to arbitrary accuracy, but
noise creates a probabilistic limit on the accuracy with which
the time shift of a signal may be estimated. If we define ∆t as
the accuracy of the estimate of the time offset of a waveform,

then

∆t≈ k.∆sig

where the constant k depends on the Signal to Noise Ratio
(SNR) and in a deterministic context on the acceptable error
rate for the estimate of the temporal offset or in a probabilis-
tic setting on the definition of ∆t.

Figure 2. Two identical signals except one is scaled 5
times the other in time.

Intuition on this point may be developed by considering
the two waveforms in Figure 2, one with 5 times the variance
of the other. Figure 3 shows both of these signals corrupted
by noise and slightly offset from the original waveform. No-
tice how much more the noise interferes with the ability to
“see” the offset in the signal with the larger temporal vari-
ance.

Because a radar at a fundamental level estimates range
by estimating differences in time-of-flight, the accuracy with
which it can estimate range is directly related to the accu-
racy with which it can estimate time offsets of the waveform,
which is directly related to the bandwidth of the waveform.
If we denote the speed of light by c and the minimum achiev-
able range accuracy by ∆r, then

∆r≈ k.c
2∆f

for some constant k which depends on the problem formula-
tion. It is possible to construct alternative formulations of the
uncertainty principle. The history of the “classical” formu-
lation is presented in [5]. In addition, there are quite a few
more recent generalizations presented in [6]. But the con-
ceptual point remains remarkably robust across a wide range
of problem formulations: Resolution is proportional to band-
width. And the only way to “cheat” this bothersome result
is to trade SNR for resolution, which significantly increases
power and/or reduces robustness.

Because greater bandwidth requires higher speed elec-
tronics, which consumes more power, there is significant in-
centive to do more with less bandwidth. Although the laws
of physics cannot be broken, their operational implications



Figure 3. The same waveforms in Figure 2 but with noise.

can sometimes be circumvented. For example, [7] presents
a radio interferometer that achieves accurate ranging on the
order of the wavelength of the carrier even when the sig-
nal is about 4 orders of magnitude narrower. This result is
achieved by exploiting the fact that, even though for normal
radio operation the carrier only needs to be coherent slightly
longer than the symbol duration, for extant radios the carrier
is coherent for thousands of times longer than the symbol
rate. This excessive coherence of the carrier allows for the
exploitation of phase differences, which yield relative range
information on the order of fractions of a wavelength of the
carrier.

This paper presents a different method of achieving rela-
tive resolution from a coherent radar that is on the order of
wavelength, even though the bandwidth is one or two orders
of magnitude less than the frequency of the wavelength. We
achieve this not by sacrificing[AA1] SNR, but by exploit-
ing the relatively long time coherence of the radar, which al-
lows us to compare the phase of returns over relatively long
time intervals, e.g., one second, in order to estimate relative
changes in range on the order of a wavelength. [AA1]Did
you mean to say increasing SNR?

2 Pulsed Doppler Radars

In this section, we briefly overview various types of
Doppler Radars, and describe elements of a PDR that is suit-
able for fine-grain relative resolution.

2.1 Continuous versus Pulsed Wave

The difference between traditional Doppler Radars and a
Pulse Doppler Radar (PDR) is illustrated by considering a
Continuous Wave (CW) radar. CW radar continuously trans-
mits a known stable frequency while listening to echoes from
the environment. It then removes the portion of the return
that matches the transmitting frequency, typically by modu-
lation of the return against the transmitted signal and apply-
ing a DC-rejection filter. The residual is the portions of the
return that have some frequency shift caused by motion of
the target.

From the perspective of mote scale WSNs, there are sev-
eral problems with CW radars: the two that seem most
important are that there are no range gates (which implies
that returns from certain distances cannot be controllably re-
jected) and that the transmitter and receiver are on all the
time. These problems can be alleviated with the PDR.

Broadly speaking, there are two types of PDRs. The first
transmits pulses and computes the frequency shift between
the return and the transmitted signal. This type of PDR is
like using a CW radar that is turned on and off in order to
create pulses. The key problem with this style of PDR is that
narrow pulses yield limited frequency resolution.

The second type of PDR is more popular: it computes
the change in the return between pulses in order to estimate
the complement of the return which is associated with mov-
ing targets. This type of PDR requires that the returns be
coherent between pulses. That is, in exactly identical envi-
ronment needs to produce the same result from one pulse to
the next. Coherence also implies that the signal to noise ra-
tios can be improved by integrating over successive returns;
this is useful when the signal is buried in the noise (SNR
< 0, which is often the case when dealing with soft targets
or small targets, such as humans, especially when the radars
are deployed close to the ground) and noise in not coherent
(which is typically the case). Nevertheless, real electronic
systems cannot maintain perfect coherences indefinitely and
the limit on which coherences can be maintained establishes
a lower bound on the Doppler frequency which can be esti-
mated. We have applied these techniques, and describe next
hardware which we have developed that achieves coherences
over 2 or 3 seconds.

2.2 Prototype PDR Mechanism

Although the class of PDR is slightly broader than is pre-
sented here, examining a prototypical implementation of the
second type helps clarify the use of phase information. Con-
sider a radar that transmits a series of short pulses of the type
shown in Figure 4. The correlation of this pulse with itself is



Figure 4. A prototypical pulse for a PDR.

Figure 5. The autocorrelation of the pulse in Figure 4.

shown in Figure 5. The key feature of the system response of
this radar shown in Figure 5 is that the response is periodic
as a function of differences in flight-path length with period
equal to the wavelength of the carrier frequency shown in
Figure 4.

(We note that correlating the return with a copy of itself
is not the only way to estimate the return from a PDR. For
example, a high-end system could utilize a non-linear Im-
pulse Response (IR) inversion technique [8], but at the time
of writing this would require 2 or 3 orders of magnitude more
computational power than is typically available on a mote.
Other systems may employ methods for truncating correla-
tion response in order to produce sharper range gates. This
periodic system response feature is nearly universal for these
PDRs as well.)

Now, consider a refinement of the PDR that lets it corre-
late the return with two different reference signals 90◦ out
of phase with respect to each other, thus producing two out-
puts, one called the in-phase signal and the other called the
quadrature signal (often denoted I & Q). The resulting out-
puts when using the signal shown in 4 are shown in Fig-

Figure 6. The output response for a “complex output”
PDR.

ure 6. These two outputs are commonly combined to form
one complex sample: In cartesian terms, the I value is the
real part and the Q value is the imaginary part; alternatively
one may represent the sample in terms of its amplitude (aka
absolute value/modulus) and phase (aka argument/angle).

It is common to call this type of radar coherent, but within
the context of this paper, the overloading of the term causes
confusion so we will adopt the descriptive, but non-standard,
terminology complex-output radar.

Of course, because of the correspondence between flight
delay and the range to the target, the complex output of the
radar is a deterministic function of its range to the target; this
is shown in Figure 7.

3 Phase Information

In this section, we first motivate why amplitude informa-
tion from the complex output PDR described above is insuf-
ficient for fine-grain range information. We then explain why
phase information does instead suffice, at least in a relative
if not absolute sense of ranging, and describe a basic algo-
rithm for “unwrapping the phase to reconstruct the relative
motion of the target. We lastly discuss how well the basic
algorithm tolerates errors due to noisy estimates of phases,
and how to further improve the unwrapping when additional
information (such as a motion model) is available.

3.1 Amplitude versus Phase of Complex Out-
put

Notice from Figure 7 that the amplitude of the complex
output provides only coarse-scale range information. Am-
plitude can differentiate whether a target is within the range
bin and the range bin is on the order of the pulse width. In
many operational scenarios, the target Radar Cross Section
(RCS) is not known precisely, which further limits the use-
fulness of the amplitude information for estimating range.

By way of contrast, the phase of the output significantly
limits the likely target locations within a range bin to only
a small subset of the range bin as a whole. Continuing the
running example, Figure 8 shows the phase of the output as
a function of range. For an arbitrary phase measurement, in-
dicated by the red line in the figure, the target could be at any



Figure 7. The display of Figure 6 as a complex real valued
function.

one of several locations, each separated by an integer number
of wavelengths, but could not be in between locations. More
specifically, for this phase measurement, Figure 9 shows the
likelihood function for an SNR of 3 dB.

Notice that the phase measurement alone tells us with
high likelihood that the target producing a return with this
phase measurement is at one of roughly 20 spots within the
range bin. As the SNR increases the likelihood spikes narrow
and become sharper. Figure 9 uses an atypically low SNR in
order to make the graph more understandable; for more typ-
ical SNRs, e.g., 6 dB or 10 dB, a single phase measurement
tells us with very high probability that the target is confined
to a very small percentage of the range bin, but that region is
divided into 20 nearly equal sized ranges spread uniformly
throughout the range bin.

By way of analogy, each phase measurement tells us that
the target is somewhere on the teeth of a comb, where the
width of the teeth of the comb are a function of SNR and
are much thinner and have much larger gaps than for a real
comb. As the target moves the “comb” moves with it. This
means by observing the phase over time we can accurately
reconstruct the relative motion of the target to the accuracy

Figure 8. Phase (expressed in units of rotations) as a func-
tion of the range to the target.

Figure 9. The likelihood function for the data in Figure 8
for an SNR of 3dB.

of the width of the teeth of the comb.

Figure 10 shows the evolution of the likelihood function
as a target passes through the field of view of the complex
output radar. We cannot tell which of these (roughly 20)
plausible trajectories correspond to the actual target trajec-
tory. But since all of the trajectories have nearly the same
relative motion, we can know the targets relative motion to
an accuracy that is a fraction of the wavelength, even when
the range bin is 10 to 100 times larger.

The distortions at the edges correspond to trajectories
where the target enters or leaves the range bin. For systems
with multiple, partially overlapping range bins, a little bit of
higher level logic can circumvent these issues.

In sum, we claim that with phase measurements and with-
out knowledge of the amplitude (perhaps because lack of
knowledge of the target’s RCS renders the amplitude infor-
mation unusable), it is possible to obtain locally precise but
globally ambiguous range information.



Figure 10. The evolutions of the likelihood function
within a range bin as a target passes through the field of
view. The red lines corresponds to maximum likelihood
and the blue region to near-zero likelihoods.

3.2 Phase Unwrapping

The basic computational task in phase unwrapping is to
reconstruct from a sampling of the phase of the PDR output
the relative trajectories, which are effortlessly seen by the hu-
man visual system in Figure 10 (or similar figures for other
trajectories). At a conceptual level, it suffices for this task to
measure the differences between successive phase measure-
ments and to accumulate these pair-wise changes.

In terms of realization, a technicality has to be dealt with,
as discontinuities arise in the measured phase a function of
range, see Figure 8. These discontinuities arise from a dis-
continuity in the phase function. To better appreciate this
problem, it is helpful to realize that our essential interest in
the phase is to measure the amount of rotation that has oc-
curred from an arbitrary starting point (see Figure 7). The
fundamental problem is that one could traverse between any
two points in the complex plane in a clockwise direction
and in a counter-clockwise direction. The clockwise path
will correspond to a positive total rotation and the counter-
clockwise path will correspond to a negative total rotation.
But these paths would differ by exactly 2π.

In complex analysis, the typical function that maps a com-
plex value to its phase is shown in Figure 11. The cut is along
the negative real axis; this choice of cut is arbitrary, but a cut
is always required.

Phase unwrapping is the process of removing the disconti-
nuities caused by the cut; this involves adding or subtracting
an integer number of rotations to each phase measurement.
In essence, it is the wellknown process of constructing a tra-
jectory on the Riemann surface shown in 12.

3.2.1 Basic Algorithm

The general principle of phase unwrapping is to select at
each sample point the unwrapped phase value that is closest
to the expected unwrapped phase value, such that the un-
wrapped phase corresponds to the measured phase.

In the absence of any other information, a simple algo-

Figure 11. The standard cut in the phase function.

rithm is to assume that the expected unwrapped phase is the
same as the previous unwrapped phase. If we denote the
measured phase at each sample by φm,i and the unwrapped
phase by φu,i. Then this algorithm can be stated as

φu,i = φu,i−1 +mod(φm,i−φm,i−1−π,2π)+π

where the sequence is seeded by φu,0 = φm,0.

In the absence of noise, this algorithm exactly recon-
structs the unwrapped phase if the sampling is at least at the
Nyquist rate. In the presence of noise this method is quite
good as long as the true rate of change of the phase between
samples is small compared to half a rotation. We often use
this basic algorithm even when it is not optimal, especially
in settings where it is difficult to even formulate the optimal
unwrapping algorithm.

3.2.2 Unwrapping Errors

In the presence of noise, the smooth likelihood contours
shown in Figure 10 become distorted and occasionally they
will be distorted in just the right way that adjacent lines ap-
pear to touch. In these cases, the phase unwrapping algo-
rithm can jump to an adjacent trajectory. This is known as
a phase unwrapping error. Once a phase unwrapping error
occurs, the algorithm will continue along the adjacent trajec-
tory forever, or until another phase unwrapping error occurs.

Measurements are normally perturbed by noise, so one
might expect that noise would cause some accumulation of
error. For instance, if instead of exploiting the phase infor-
mation we were to estimate the instantaneous velocity and
then integrate the velocity in order to estimate total displace-
ment, we would expect the error on the accumulated dis-
placement to be a random walk.

However, with phase unwrapping, small errors cancel out,
unless they cause a phase unwrapping error. If we denote θi
as the true phase and ηi as the noise induced measurement



Figure 12. The Riemann surface that is the extension of
the phase function shown in Figure 11.

error, then accounting for wrapping yields

φm,i = mod(φm,i +ηi−π,2π)+π

It follows that if there are no phase unwrapping errors in the
sequence { j...k} then the true phase change is

∆θ = θu,k−θu, j

and

∆φ = φu,k−φu, j = ∆θ+ηk−η j

In other words, if ∆θ is small, the net unwrapping error is
affected only by the error associated with the first point and
the last point, the intermediate errors have no effect. (In case
∆θ≈ 0, it would even make sense to apply a low pass filter in
order to improve the SNR until ∆θ becomes significant.) But
the performance of the algorithm deteriorates when ∆θ→ π.
That is, when the Doppler velocity approaches the maximum
detectable velocity or when the sampling rate is reduced to
something near the Nyquist rate, the underlying assumptions
of the basic algorithm are violated and the algorithm is more
likely to jump to an adjacent trajectory.

That there is zero accumulation of error owing to inter-
mediate points in phase unwrapping, when every phase mea-
surement has a small amount of error, is a surprising and
somewhat unintuitive result. What is happening is that rou-

tine small errors are corrected, and the cost is the occasional
insertion of a larger unwrapping error.

An analogy might be drawn to financial hedging strate-
gies that smooth out normal fluctuations, but create the risk
of relatively rare catastrophic losses, except in this case the
rarer large error is not catastrophic. Asymptotically, the ac-
cumulation of error occurs at a comparable rate, but rather
than being spread uniformly across all samples the growth
of error is bunched together in a much smaller number of
unwrapping errors. This is not necessarily bad, but it is easy
to build algorithm on top of phase unwrapping that assume
(and depend on) a more traditional, e.g., Gaussian, error dis-
tribution.

For circular Gaussian noise in the complex output it is
possible to explicitly compute the probability of a phase un-
wrapping error for the basic algorithm as a function of SNR
and ∆θ.

3.3 Alternative Tracking Method for Phase
Unwrapping

The basic algorithm implicitly exploits a random walk
style motion model, which simply assumes that the next lo-
cation is close to the old location. For targets with significant
momentum, it would make more sense to utilize a more tra-
ditional motion model.

In this case, phase unwrapping can be formulated as a
problem of phase tracking. At each iteration, the history of
the unwrapped phase is applied to a motion model to predict
the next unwrapped phase value. This prediction is used to
select the unwrapped phase value that is closest to the pre-
dicted value and corresponds to the actual measured wrapped
phase.

For instance, when applying phase tracking to track a
1-dimensional pendulum in this manner, we would use a
quadratic motion model. We would perform a least squares
fit of a cubic polynomial to the last (say) 30 unwrapped phase
values and extrapolate one sample into the future in order to
estimate the next unwrapped phase value and use this pre-
diction to select which unwrapped phase value to use for the
next point. This process is depicted in Figure 13.

Because this motion model fits the mechanics of the tar-
get, it reduces the phase unwrapping error to below the level
at which we could experimentally evaluate it.

3.4 Impact of Multiple Targets on Phase Un-
wrapping

So far the discussion has focused on understanding the
trajectories of a single target. If there is more than one target
within the range bin, the complex output of the PDR will be
the sum of the complex outputs that would be produced by
each of the individual targets.

If it is the case that one of the targets is stronger than



Figure 13. An example execution of a partial phase track-
ing algorithm. The blue points are unwrapped phase
measurements, the green line is the estimated track, and
the red line is the quadratic motion model that fits the
last 40 points.

the rest (this is often the case with soft targets such as hu-
mans which can be regarded as a union of multiple moving
objects), the interfering returns from the weaker targets add
a wobble onto the trajectory of the stronger target. But be-
cause of the way that errors accumulate in the phase unwrap-
ping algorithm, the wobble does not significantly distort the
long term estimate of the trajectory of the stronger target. Of
course, the presence of other moving objects in the vicinity
does increase the rate of phase unwrapping errors, but if the
stronger target dominates by even a few dB, this effect is not
operationally significant.

For a modest number of targets with different amplitudes,
if we can access a motion model, it becomes possible to track
these separately. However, if these are nearly equal ampli-
tude targets, it rapidly becomes impractical to differentiate
individual targets. In effect, the unknown motion of one tar-
get acts as noise obscuring the individual motion of the other
targets.

In sum, the unwrapping technique is implicitly depen-
dent on sparsity of targets, and will not work when sensing
a crowd of people. The fact that there may be a significantly
stronger total return from stationary clutter than from the hu-
man tends not to be a problem because the Doppler filter
removes the component of the return arising from stationary
objects. In addition, the fact that there may be many other
lesser moving targets in the scene tends not to be a problem
because the stronger return will dominate the weaker return.

4 PDR Network Applications

This method primarily facilitates the differentiation be-
tween different types of motion rather than different types
of targets. Of course in some cases a characteristic motion
may be one of the more identifiable features of the target
type. But more generally this technique allows us to deter-
mine whether a target is moving in a particular pattern.

Many of the mote scale PDRs are particularly well suited
for monitoring human activities. The kinds of applications

that this technology could enhance include detecting:

• When someone has fallen down.

• When someone is running.

• When someone is performing manual labor.

• When people are fighting.

• When someone is dancing.

• When someone is stopping at a designated location, as
opposed to merely passing by without stopping.

• When someone performing an unsafe movement in a
work setting.

This leads to potential applications in safety, security, ac-
tivity accounting, and marketing. In addition, to this class of
applications we will describe in more detail two somewhat
less typical applications.

4.1 Displacement Detection

For large scale intruder detection applications of the type
that might be important in civilian border patrol scenarios,
facility protection scenarios, or military perimeter protection
scenarios, short range sensors, especially mote scale sensors,
tend to play an important role, because complex terrain of-
ten renders long range sensing incomplete. Expensive long
range sensors are often too expensive to use in areas where
occlusions limit the sensing range irrespective of the sensors
capability. As a result it is operationally useful to deploy
large scale WSN in conjunction with more traditional long
range sensors.

Intruders may be readily detected with a verity of motion
detectors, such as PIRs. However, a key problem with the
scenario is that natural motion in the environment tends to
cause false alarms. This is especially true in outdoor envi-
ronment where vegetation blows in the wind. Detuning the
motion detector to ignore trees and bushes blowing in the
wind may render it ineffective against humans attempting to
conceal their motion.

A natural solution is to analyze the type of motion in order
to the motion of brush blowing in the wind from the motion
of humans. Recently there has been some work on attempt-
ing to do this with PIRs that employ complicated land struc-
tures that allow them to acquire more information about the
targets motion than is available through the typical PIR [?].

Using phase unwrapping technique presented here and a
PDR, it is possible to differentiate targets that sway back and
forth with negligible cumulative displacement from targets
that actually move through the scene. The result is very
robust and easy to implement even on low-end motes. We
demonstrate this capability next through real experimental
data.



4.1.1 Experimental validation

In this section, we describe the experimental validation of
our Displacement Detection system. We present data col-
lected in an outdoor setting using both a real human tar-
get and relevant background objects such as moving trees
and bushes since the real application of our algorithm lies
in robustly distinguishing background targets like trees and
bushes from real targets like human intruders.

Setup. The experiments were performed using the Bum-
bleBee Pulsed Doppler Radar [9] connected to a TelosB
mote. The in-phase and quadrature radar data was sampled
at 333Hz and logged to a laptop for phase unwrapping and
displacement analysis.

In the first set of experiments, we set the BumbleBee radar
close to a bush or a tree in moderate to high wind conditions
so that the back and forth blowing of the branches and leaves
could be observed. In the next set of experiments, we had a
human target walk through the same scene traversing a phys-
ical distance of several meters. Results. Figure 14 shows the
raw (amplitude) data and it can be seen that the amplitude of
the radar signal goes high whenever there is motion, whether
it is caused by a blowing tree or by a human target walking
through the scene. Moreover, the amplitude of the radar re-
turns is comparable for a human target and a large tree (12ft
tall in this case) moving in high wind. However, Figure 15
shows the unwrapped cumulative phase for the same data
and we clearly see that the unwrapped phase changes sharply
when the motion traverses across a certain physical distance.
To quantify this difference, we plot the frequency distribu-
tion of the total unwrapped phase change over a fixed time
interval for background and human targets, which is shown
in Figure 16.

Figure 14. Raw data for tree blowing in the wind and
human target walking through the scene.

We see from Figure 16 that there is a clear separation in
the phase change over a certain time window (1 second in
this case) between motion that is concentrated at the same

Figure 15. Unwrapped phase.

Figure 16. Histogram of cumulative displacement for
background vs. human targets.

location and motion which traverses a physical distance in
space. The histogram allows us to clearly select a spatio-
temporal threshold (60 cms per second in this case) that al-
lows us to robustly distinguish motion of a human target that
traverses across physical space from that of background ob-
jects like trees and bushes which is localized.
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