
 

 

Arduino – BumbleBee Radar Displacement Detector  
System Documentation  
The Samraksh Company, September 2015 

 

The BumbleBee, made and sold by Samraksh, is a small, inexpensive, low-power phased pulsed Doppler 

radar that can be used to detect various kinds of physical motion, including displacement (movement in 

one direction) and periodic (movement back and forth). If it’s used to detect displacement then it can 

detect the motion of an animal, person, vehicle or some other object without being confused by 

periodic motion such as a bush or tree in the wind. 

In this write-up we’ll describe a project that uses a combination of an Arduino UNO and BumbleBee 

radar as a displacement detector, along with a PC that acts as a base station. Here’s a block diagram. 

 

The BumbleBee is powered by the Arduino and sends sensed data to it on two ADC lines. The Arduino 

runs a program that interprets the BumbleBee data, decides if displacement is happening, and does 

confirmation. The program sends displacement and confirmation decisions to the PC over the serial 

port, optionally with sample-level detail. The PC runs a program that receives the Arduino output, 

displays it on a log, changes the display and plays a sound when displacement is occurring. 

Bumblebee Arduino PC

ADC
Serial



Arduino – BumbleBee Radar Displacement Detector  
System Documentation 

- 2 - 
 

1 Setting Up the Displacement Detector 

 

Parts List: 

1. Arduino UNO. Other versions of Arduino might also serve. 

2. BumbleBee radar. 

3. BumbleBee stand.  

4. Breadboard. Optional but useful. 

5. (3) LEDs with resistors. Optional but useful. Preferably high-intensity for better visibility. For the 

size of the resistor, see http://www.instructables.com/id/Choosing-The-Resistor-To-Use-With-

LEDs/.  

6. 2 SPST momentary contact switches. Optional but useful for event syncing and for SD output. 

o For syncing, closing the switch sends a special message to the PC that can be used to 

synchronize with a video camera or other ground-truth sensor. 

o For SD, closing the switch closes the SD output buffer and idles the Arduino. 

7. PC running Windows. This is optional but useful for running the client program. 

8. Miscellaneous items such as jumpers. 

 

The Arduino with the BumbleBee Radar 

http://www.instructables.com/id/Choosing-The-Resistor-To-Use-With-LEDs/
http://www.instructables.com/id/Choosing-The-Resistor-To-Use-With-LEDs/


Arduino – BumbleBee Radar Displacement Detector  
System Documentation 

- 3 - 
 

1.1 BumbleBee Pinouts 
The BumbleBee pinouts are shown below. The two ground pins are internally connected so only one 

need be connected to the Arduino. 

 

 

Pin Type Designation Remarks 
Connector J1 

1 In Ground  

2 In Power [3.65v, 16v] 

3 In Shutdown Assert high to enable, assert low to shutdown 
Connector J2 

1 Out Ground  

2   Unused 

3 Out In Phase Analog [0,3.3v]  

4   Unused 

5 Out Quadrature Analog [0,3.3v]  

Connector J1

Connector J2

Pin 1

Pin 1

 



Arduino – BumbleBee Radar Displacement Detector  
System Documentation 

- 4 - 
 

1.2 Wiring 
The BumbleBee is connected to the Arduino as shown. In addition, 

you can wire the optional switches and the LEDs. Note that the 

Arduino’s 3.3v output is wired to the AREF input. This is used as the 

ADC reference voltage, matching the output range of the 

BumbleBee. 

 

 

1.3 Mounting the BumbleBee onto a Stand 
A grounded object within one wavelength of an antenna will load the 

antenna in such a way as to dramatically diminish the effectiveness of 

the antenna. The BumbleBee’s center frequency is 5.8 GHz, which 

corresponds to a wavelength of about 5.2 cm. As a result it is ideal to 

position the radar so that its antenna is at least 5.2 cm away from any 

large metal objects, especially the batteries. To make this easier to do 

the BumbleBee comes with a plastic stand. 

The stand is assembled by screwing the four plastic posts into the 

base as shown in the figure. The plastic thread can easily be striped 

with excess force. In addition avoiding cross threading requires a 

steady downward force and carful perpendicular alignment. Once all 

4 posts are secured, remove the black thumb screw and washers on 

the top of each post. Place the board on top of the posts and refasten 

each of the thumb screws, making sure that the washers are on top of 

the board. The threaded posts allow you to assemble and disassemble 

the stand many times. However the plastic threads are striped more 

Stop 
program

Cut

Disp

Conf

J1 pin 1: Gnd

J1 pin 2: Pwr

J1 pin 3: Shutdown

J2 pin 5: 
Quadrature (Q)

J2 pin 3: 
In-Phase (I)

Send sync 
message

BumbleBee Arduino 

J1 pin 1 (Gnd) Gnd 

J1 pin 2 (Pwr) +5v 

J1 pin 3 (Shutdown) +5v 

J2 pin 3 (In-Phase) A0 

J2 pin 5 (Quadrature) A1 

  



Arduino – BumbleBee Radar Displacement Detector  
System Documentation 

- 5 - 
 

easily than metal threads. Once your setup is finalized you can improve the strength by gluing the posts 

into the base.  

2 How Displacement Detection Works: An Overview 

The BumbleBee produces two analog power values called In-Phase (I) and Quadrature (Q). The internal 

values are over a positive-negative range that can vary depending on variability in components in the 

BumbleBee. To reduce error (and to be compatible with ADCs that only accept non-negative voltages), 

the I and Q power values are each shifted so as to be non-negative. As the Arduino program samples the 

I and the Q power values via the ADC it calculates a running average for each and subtracts it from the 

respective power value sampled. Over time this gives sample power values that are accurately displaced 

in the positive-negative range. 

The BumbleBee Tutorial gives detail on how it can be used to detect motion and direction. In Figure 1, 

taken from the tutorial, we have a target that is moving away from the BumbleBee. The sample power 

values are shown from sample 0 through sample 8. As the target moves away, the I-Q power values 

change as shown. For example, sample 1 is clockwise from sample 0 and similarly sample 2 with respect 

to sample 1. At sample 8 the I-Q power values are the same as for sample 0. As the target keeps moving, 

the rotation of sample power values continues. 

 

If the target is moving towards the BumbleBee, we’ll see the same thing happen except the rotation on 

the graph will be counter-clockwise. Because of the frequency the BumbleBee uses for its radio 

broadcast, each rotation represents about 2.6 cm of distance. 

Our interest is to detect when something is moving in a steady fashion towards or away from the 

BumbleBee, ignoring things that are moving back and forth. We’ll do this by “chunking” the movement 

into units of one rotation—2.6 cm—assigning a +1 value if it’s clockwise (away from the BumbleBee) and 

otherwise -1. A positive value represents an increase in range, a negative value a decrease. We 

Figure 1: Plot of I-Q Power Values  

 



Arduino – BumbleBee Radar Displacement Detector  
System Documentation 

- 6 - 
 

arbitrarily choose the left half of the I (horizontal) axis as our “cut” point, when we declare that a 

rotation has taken place.  

Next we sum up the cuts over the course of a time interval called a “snippet”; in the program we’ve 

chosen a snippet size of 1 second. If the sum of the cuts is at least some minimum cumulative cuts value 

we declare that displacement has occurred. We’ve chosen 6 as the minimum; you can choose your own. 

Since negative and positive cuts cancel each other out, there have to be at least 6 net cuts in the same 

direction in one snippet. Since a cut is 2.6 cm, 6 cuts is a displacement of 15.6 cm.  

As you might have noticed, a target’s motion could begin just before a cut boundary and, upon the 6th 

cut, end just after the boundary, making the displacement a bit more than 4 * 2.6 cm = 10.4 cm instead. 

We’ve found this isn’t usually a problem, but if you care, you’re free to modify the program to keep 

track of the distance between each successive pair of samples rather than cuts. If you do, be aware of 

the fact that this will take more time so it might not be possible to get it done in the time between two 

samples, and it will take more power, reducing lifetime if using battery power. 

Suppose we have a bush being blown by the wind. If it’s gusty wind, the bush will be blown back and 

forth so the positive and negative cuts will cancel each other out and displacement will not be detected. 

As you reflect on this, you’ll see that there are ways in which a false detection could occur. For example, 

a large bush might be blown more than the 15.6 cm and held there steadily for a while, causing 

displacement detection; later the wind might slacken and another displacement in the other direction 

might occur. Sensors aren’t perfect and neither are detection algorithms, so to add to our confidence we 

include an M-of-N confirmation: In the last window of N snippets, has displacement occurred at in least 

M of them? If we choose M = 2 and N = 8, then confirmation occurs if any 2 of the last 8 snippets shows 

displacement. As with minimum cumulative cuts, M and N can be adjusted to your taste. 

The displacement detection and confirmation algorithms themselves be adjusted. For example, instead 

of dividing time into fixed snippets, you could try a sliding window, so that a snippet would start only 

when you detect a cut. The M-of-N confirmation is agnostic to whether the M cuts are positive or 

negative or a mix, so displacement forward and backwards would each qualify to help satisfy the 

confirmation requirement. You could change it so that all displacements would have to be in the same 

direction. You can be as creative as you like on your detector algorithm and/or confirmation algorithms; 

you can bias it towards minimizing false detections by making the minimum cumulative cuts larger at 

the expense of missing some actual detection; and conversely making it smaller to minimize misses at 

the expense of false detections. Just bear in mind that each choice comes with a trade-off and you’ll 

need to decide what’s important to you. 

3 Arduino Displacement Detector Program 

The Arduino program was developed using Visual Micro, an add-in for Visual Studio that facilitates 

Arduino sketch development and debugging. However, the program does not depend on it and you’re 

free to use the development tools of your choice. 

3.1 BumbleBee_Displacement_Detector.ino 
This is the main sketch. It handles the overall orchestration of displacement detection. Broadly speaking, 

the process is as follows. 



Arduino – BumbleBee Radar Displacement Detector  
System Documentation 

- 7 - 
 

 The setup function does the usual initialization. It also initializes a semaphore and starts a timer 

at 250 Hz.  

 The timer callback function (interrupt service routine) reads alternately from ADC0 (I power) and 

ADC1 (Q power). To form a sample, it applies the running average to the channel sampled and 

interpolates the value for the other channel (described in more detail below). When a sample is 

ready it sets the semaphore. 

 The loop function waits on the semaphore. When it is set, it resets it and processes the sample, 

checking for displacement and for M-of-N confirmation. The results are optionally sent via serial 

to the PC. 

A number of GPIO lines are used to give alerts and provide information for debugging with a logic 

analyzer or oscilloscope.  

3.1.1 Sampling and Detection Parameters 
The following parameters let you control how sampling and detection work. 

 DefaultSampRate. This is typically 250 but you can increase or decrease it as need be. 

 MinCumCuts. The minimum number of net cuts (positive or negative) necessary to detect 

displacement. 

 NoiseThreshold. The minimum absolute value that samples must have to be considered for 

detection. Both the I and Q values must be at least this amount or the sample will be excluded. 

A value of 0 will include all samples. 

3.1.2 Interpolation 
 Since we are alternating between sampling the I and Q channels, we calculate the 

value for the unsampled channel as the average of the last and the next values. In 

the example shown, we can’t interpolate for Q in the first sample because there is 

no previous value. For sample 2, we can interpolate for I as (4 + 5) / 2 = 4.5. Hence 

for sample 2 the I-Q pair formed is (4.5, 7). Similarly, for sample 3 the pair is (5, 5.5). 

To interpolate we have to read ahead one sample in order to have a next value available. 

3.1.3 Serial Logging 
The program can optionally send sample detail or snippet-level information to an attached PC. You can 

select it by uncommenting one of the values for the serialLog constant. The options are 

serialLog value Remarks Prefix 

serialNone No serial logging  

serialAllInputs Log all inputs. This is useful for validating input 
interpolation and averaging. As this sends quite a bit of 
data, the sample rate is automatically reduced when 
this is chosen. 

#i 

serialRawInputs Log the raw inputs without any processing. This is 
useful for validating the BumbleBee and the ADC. 

#r 

serialAdjustedInputsAndDetections Log the interpolated, mean-adjusted inputs and 
detection & confirmation results. This is the most 
common option. 

#j 

serialDetects Log detection & confirmation results only. #d 

Sample I Q 

1 4  

2  7 

3 5  

4  4 



Arduino – BumbleBee Radar Displacement Detector  
System Documentation 

- 8 - 
 

 

Log output is ASCII with comma-delimited values, each entry terminated with a new line. This makes it 

convenient for subsequent processing in a spreadsheet or other program.  

If serialLog is assigned other than serialNone then the program sends a serial message prefixed by “#c” 

that lists the column heads for the option selected. 

As described in the PC client program in Section 4, log entries received from the Arduino have a 

timestamp added when it arrives. 

3.1.4 Synchronization Support 
In evaluating the results of logged info it can be useful to be able to correlate times. When the optional 

sync switch is pressed, the program sends a “#s” serial message. If the switch press happens in the 

presence of a video camera, the video time of the sync can be correlated with the PC logging time. 

3.1.5 Other Serial Interaction 
The Arduino program listens for serial input. If it receives a “*p” message, it will send a series of output 

messages prefixed with “#p” that give the sample rate, minimum cumulative cuts for displacement and 

the M-of-N parameters. A client program that connects to the Arduino after it has started can send the 

“*p” message to get the parameters.  

Other serial interactions are possible. For example, you could implement a command that would change 

the sampling, detection and confirmation parameters dynamically or a command that would change the 

logging choice. 

3.1.6 Using an SD Card 
Code is present to log to an SD card using the FAT file system. However, write is blocking so the program 

cannot proceed when data is being written to the card. This delay is sufficient to cause samples to be 

lost. You may want to experiment with this to see if you can overcome the limitation. 

3.2 Other Program Files 
Detector.ino: Handle cut analysis, displacement detection and MofN confirmation. 

Logging.ino: Handle logging. 

serialInput.ino: Process serial inputs. 

Utility.ino: Print int65_t variable values. 

Misc.ino: Miscellaneous stuff. 

3.3 Power Management 
The program does not do any power management on the Arduino: it is running at full power all the 

time. However, there are tools you can use to make it sleep between events. For example, 

http://playground.arduino.cc/Learning/ArduinoSleepCode.  

http://playground.arduino.cc/Learning/ArduinoSleepCode


Arduino – BumbleBee Radar Displacement Detector  
System Documentation 

- 9 - 
 

4 PC Client Program 

The PC client program for the displacement detector is a Windows Forms C# program.  You can of 

course modify the program to suit your needs. If you have a Windows PC but don’t have Visual Studio 

(commonly used for C# programming), you can get a free version from 

https://www.visualstudio.com/en-us/products/free-developer-offers-vs.aspx.  

 

The program is used to connect via serial to an Arduino running the displacement detection program. To 

get started, select the COM port that the Arduino is attached to; refresh the COM list if necessary. Click 

“Enable Serial” to start. If you want to log, choose a folder and click “Log to file”. You can populate the 

Parameters panel by clicking the refresh button. 

When a displacement occurs, the Disp control changes color and a sound plays; and similarly for 

confirmation. The log window only shows a subset of the log entries being received. The log-to-file 

option, if chosen, saves all entries. Each entry is prepended with a time stamp based on the PC’s wall 

clock time. 

5 Validation 

The Arduino program was validated by processing log output in a pair of MatLab programs, included 

with the displacement detector programs.  

Using the serialRawInputs option for logging, MatLab program ValidateArduinoDetects.m was used to 

check sample interpolation, running averages and average-adjusted values. 

https://www.visualstudio.com/en-us/products/free-developer-offers-vs.aspx


Arduino – BumbleBee Radar Displacement Detector  
System Documentation 

- 10 - 
 

Using the serialAdjustedInputsAndDetections option for logging, MatLab program 

ValidateArduinoDetects.m was used to check cut analysis, detection and confirmation. The algorithms 

used by the MatLab program are different than those used by the Arduino program. The MatLab 

algorithms are high-level, making use of the availability of history and future data for interpolation, trig 

functions for cut analysis, and a sliding window for MofN confirmation. 


	1 Setting Up the Displacement Detector
	1.1 BumbleBee Pinouts
	1.2 Wiring
	1.3 Mounting the BumbleBee onto a Stand

	2 How Displacement Detection Works: An Overview
	3 Arduino Displacement Detector Program
	3.1 BumbleBee_Displacement_Detector.ino
	3.1.1 Sampling and Detection Parameters
	3.1.2 Interpolation
	3.1.3 Serial Logging
	3.1.4 Synchronization Support
	3.1.5 Other Serial Interaction
	3.1.6 Using an SD Card

	3.2 Other Program Files
	3.3 Power Management

	4 PC Client Program
	5 Validation

