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The BumbleBee, named after the world’s smallest bat, is a micro-power pulsed Doppler radar with 

complex output that provides high-precision, high-resolution information about a target’s relative 

motion and direction. Software can adjust the detection focus from a near-field range of 0.2 to 1 m, out 

to a far-field range of 1 to 10 m. The BumbleBee only consumes about 12 mA, so when using typical 1.5v 

AA alkaline batteries with a capacity of 2400 mA hours, it can run at 100% duty cycle for about 8 days. It 

is easily interfaced to mote-scale devices such as the eMote .NOW or the Arduino.  

1 The Limitations of Low Power 
Pulse-Doppler radar can measure the range of a target by measuring the elapsed time between a pulse 

of radio energy (the reference) and its reflection (the reflection), and can measure target velocity using 

the Doppler effect by the frequency shift of the reflection.  

The problem for a low-power application like ours is that the speed of light is so large that measuring 

the pulse and reflection times and frequencies accurately requires a lot more computing power than a 

battery can sustain for very long.  Light takes about 1 nanosecond to travel 1 foot. To measure the 

round-trip time to a foot of resolution would require a clock running with a speed of at least 0.5 GHz (2 

nanosecond cycles). That’s 0.5 GHz rather than 1 GHz because a change of one foot in distance to the 

target is two feet for a round trip. So we only need a resolution of 2 nanoseconds. 

Nevertheless, this puts us into the PC range, with corresponding power requirements. By contrast, the 

Arduino UNO R3 has a 16 MHz clock, about 3% that speed. This would give us about 30 feet of 

resolution. We wouldn’t know much more than that the target is in range of the radar, and even at 

Arduino speeds we wouldn’t be able to sustain battery power for very long. We need to do better and at 

less power. 

2 Relative Distance 
What we’ll do is give up on absolute distance and see if we can measure a different kind of distance: 

relative distance; as we’ll see later, we can also get velocity. Our point of reference is the radar pulse 

that’s sent out: a radio wave that’s transmitted for some period of time. The pulse is a sine wave in 

which the amplitudes form a regular, repeating pattern. Each repeat is called a cycle. Here is an example 

of one cycle in a sine wave, beginning and ending when the amplitude is zero.  

 

Figure 1: Radio Cycle 

 

https://samraksh.com/products/sensors/32-product-pages/products-sensors/71-bumblebee-radar
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http://www.techlib.com/reference/batteries.html
https://samraksh.com/products/31-product-pages/product-small-battery-powered-computers/60-emote-now
http://www.arduino.cc/en/Main/ArduinoBoardUno
https://en.wikipedia.org/wiki/Pulse-Doppler_radar
https://en.wikipedia.org/wiki/Doppler_effect
http://en.wikipedia.org/wiki/Nanosecond
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The radar broadcasts a sine wave for a short period, producing a reference pulse, pauses a bit and then 

starts receiving the return pulse that has been reflected off some target. While paused, some of the 

return may have come in, so when the radar does start receiving, it will in general be somewhere in the 

middle of the reflected reference. 

In the figure above, the radar has transmitted the reference pulse, paused, and then started receiving 

the reflected return. Notice that part of the reference had already arrived before the receiver turned on; 

this is the lighter part on the left. Hence the return that’s actually received is the darker part which 

begins partway into the reflected return. In this case, the return begins part way into a cycle. 

Suppose we know where in a cycle the return pulse begins. What can we do with it? The BumbleBee 

transmits at 5.8 GHz—that’s 5.8 billion cycles per second. Since the transmitted pulse is traveling at the 

speed of light, we can calculate that each cycle is about 5.6 cm, called the wavelength. In the figure, the 

pulse starts about 1/8 into a cycle which is a distance of 1/8 of a wavelength. So the pulse begins 1/8 * 

5.6 = 0.7 cm from the start of the cycle.  

Now suppose the target moves slightly farther away, so that the return is delayed and now begins 1/4 

into the same cycle. In this case, the pulse begins 1.4 cm from the start of the cycle. How far has the 

target moved? Because of the round-trip effect, it will be half of the difference. This means the target 

has moved (1.4 – 0.7) /2 = 0.35 cm.  

What can we do with this information? If we go through the transmit-wait-receive process fast enough, 

we can track the motion of the target with respect to the radar, and do so with a high degree of 

accuracy and precision. Notice however that we don’t know what cycle the target is in. In our illustration 

above, we could shift the return a full cycle to the left or the right and get the same result. Each cycle 

represents a 2.8 cm interval of target displacement (5.6 cm / 2 because of the round trip). Since we can’t 

tell which cycle the target is in, we can’t tell which interval it is in. Collectively, the intervals a target 

might be in are called the ambiguity intervals.  

But knowing where the target is within a cycle can be put to good advantage. So long as the target is 

within range of the radar, we can track the amount of motion and a computer that is processing the 

BumbleBee’s output can distinguish oscillating motion (such as a bush blowing back and forth in the 

Figure 2: Radar Reference Pulse and Return 
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wind) from displacement (motion in one direction). We can, with enough post processing on a 

computer, even do such things as tell whether the target is walking, running, skipping or dancing a jig. 

3 How the BumbleBee Works 
Here we’re going to get in to details of how the BumbleBee does its job. We aren’t going to be getting 

into hardware details and we aren’t going to be using a lot of math. The goal instead is to give you a 

clear idea of what’s going on. 

3.1 Getting the Basic Information 
Our first job is to figure out where in a cycle the return begins. We can do this fairly easily up to a point 

provided we don’t care what direction the target is moving and the size of the target doesn’t vary. In the 

next section we’ll see how we can resolve these limitations. 

At this point, we have the reference pulse and the return pulse to work with. An important thing to keep 

in mind is that the reference is a sine wave and so is the return. They differ only by the offset and length 

of the return. 

The first thing we do is multiply the wave of the return pulse (or, when unambiguous, just return wave 

or return) by the wave of the reference pulse (reference wave or reference), a process called amplitude 

modulation; see http://www.dspguide.com/ch10/5.htm for example. This will produce a new wave 

whose amplitude changes according to the return’s offset. The figures below shows the effect of 

modulation. In Figure 3 the return is not offset. As you can see in the modulated wave, the amplitudes 

are all non-negative. If this surprises you, keep in mind that we’re multiplying the waveforms, not 

http://www.dspguide.com/ch10/5.htm
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adding them. Hence, for example, if the reference value is -2, the return value is also -2 so the product is 

4. 

 

Figure 3: Modulating a Return Wave: Zero Offset 
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In Figure 4 the return is offset by 2/8 wavelength (one quarter or 90 degrees). In this case, the 

modulated wave is symmetric around zero. 

 

We can characterize these two modulated waves according to their average power (or just power). This 

is also known as the DC value, and is calculated by averaging the amplitudes of the wave. Hence the 

modulation of a reference wave with a 0-offset return wave yields an average power of 2. Modulation of 

the same reference wave with a 2/8-offset return wave yields an average power of 0. We can use this 

information to help determine the offset of the return and hence the relative position of the target. 

Incidentally, you may have noticed that the modulated wave is the same length as the reference wave. 

We did this in order to make the presentation clearer. In reality the wave will be truncated, depending 

on when the receiver started to receive it. This will affect the average power but only slightly. Any 

number of whole cycles can be truncated without any change, so the variability will be with respect to 

the truncation of the final (partial) cycle. If a wave has enough cycles, this difference will be insignificant. 

Now suppose we send out multiple pulses and calculate the power of the return. As the target moves 

we will see the values change. This lets us know that the target is moving but as it turns out, we can’t tell 

what direction it’s moving. Figure 5 shows the power for returns with offsets in one-eighth wavelength 

increments. Note that the values are symmetric around 4/8, so for example, the value for 1/8 is the 

same as for 7/8. So if in one sample we get a power value of -2.00 and in the next -1.41, we cannot tell if 

Figure 4: Modulating a Return Wave: 2/8 Wavelength Offset 
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the target is moving towards or away from the radar. Nor can we tell how much it’s moving: if one 

power value is 2.00 and the next is -1.41, the target might have moved 3/8 or 5/8 of a wavelength.  

 

3.2 Resolving Target Direction, Distance and Size 
So the power value lets us know about movement but not direction or amount of movement. The trick 

to resolving the issue of this is to once again modulate the return but with a displaced reference. 

Imagine that we have two perfectly isolated radars side-by-side such that the operation of one does not 

interfere with the operation of the other. The second radar is set back slightly so that it’s exactly one 

eighth of a wavelength farther than the first; because of the round-trip effect, the total path will be one 

quarter of a wavelength farther. Suppose both radars broadcast and receive at exactly the same times. 

Then the return for the second radar will be the same as that of the first except that it will be offset one 

quarter of a wavelength.  

The results of the first radar we call In-Phase (I) and the second Quadrature (Q) (because it is offset one 

quarter wavelength). If we take readings for a target that moves in 1/8 wavelength steps between 

readings, we’ll get the I and Q modulations and power values shown in Figure 6. 

Figure 5: Power Values for One Wavelength 

Wavelength Offset Power 

0/8 2.00 

1/8 1.41 

2/8 0.00 

3/8 -1.41 

4/8 -2.00 

5/8 -1.41 

6/8 0.00 

7/8 1.41 

8/8 2.00 
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Note that if we take I and Q together, the symmetry is broken. As you can see in Figure 7, each I-Q value 

pair is unique. At the boundaries, 0/8 and 8/8, the values are the same as we’d expect. 

 

There’s something else interesting about this. Not only do the value pairs repeat from one cycle to the 

next, within a cycle they form a polygon shape with the vertex points in order. In Figure 8 the value pairs 

go clockwise from 0/8 offset through 7/8 offset and then back at 8/8 offset. 

Figure 6: I-Q Modulation & Power @ 1/8 Wavelength Offsets 

 

Figure 7: I & Q Power Values for One Wavelength 

Wavelength Offset I Power Q Power 

0/8 2.00 0.00 

1/8 1.41 1.42 

2/8 0.00 2.00 

3/8 -1.41 1.42 

4/8 -2.00 0.00 

5/8 -1.41 -1.42 

6/8 0.00 -2.00 

7/8 1.41 -1.42 

8/8 2.00 0.00 
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As the target moves away from the radar, the return takes longer to arrive so more of the return wave 

prefix will be dropped and the offset will increase. So clockwise I-Q power value pair sequences means 

that the target is moving away while counter-clockwise means it is moving closer. (By the way, we plot 

the In-Phase value on the X axis and the Quadrature power on the Y axis. This is a standard convention, 

which we follow here.)  

Now we can tell with excellent fidelity and precision both the direction of target movement as well as 

distance traveled between samples. 

It turns out we’ve also solved another problem. Hitherto we’ve assumed that the target is of a fixed size. 

Actually, it’s not the size that matters so much as the radar cross-section, the profile presented to the 

radar. The power of the return wave will vary according to the cross-section of the target. So a thin, 

wide target (a piece of sheet metal, for instance) will have a large return power when facing the radar 

but a small return power when turned sideways.  

The way we’re measuring I-Q values lets us avoid the cross-section issue entirely. In Figure 9 we have 

the I-Q power values varying from a weak target that presents a small cross-section (25% of the highest 

power that could be returned) to a strong target that presents a large cross-section (100%). Note that 

these values form a straight line to the origin, so in each case the angle is the same. Thus, no matter the 

strength of the target, we can tell the direction of motion and the distance traveled by looking at the 

relative angles. 

Figure 8: Plot of I-Q Power Values for One Wavelength 
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Actually getting the I and Q returns with two carefully placed radars would be tricky. Fortunately, we 

don’t need to do that. Recall that modulation is the product of the outgoing reference wave and that of 

the return. The process we’ve just described makes a one-quarter offset by having a second, carefully 

positioned radar in order to delay the return. Suppose instead we were to use the same return as on 

original radar but instead offset the reference. Since in both cases the reference waves are the same 

except for an offset, the net result is the same as having two radars. And that, in fact, is what the 

BumbleBee does. So when it receives a return signal, it modulates against the reference and against a 

reference that’s been offset by one-quarter wavelength. This gives us the power values for I and Q. 

Now we have a way to estimate the amount of motion—the displacement over time. As we noted 

earlier, if the angle between two consecutive I-Q lines it is clockwise, the target’s movement is towards 

the radar and otherwise it is away. In Figure 8, a target movement resulting in consecutive 

measurements for point 7 on the graph followed by point 1 is counter-clockwise and therefore the 

target motion is away from the radar. Conversely, a move point 1 followed by point 7 is clockwise so the 

target motion is towards the radar. The amount of motion can be calculated as follows, given 

consecutive I-Q values of P1 and P2. We do the calculation using degrees, but you can use radians 

instead. 

 Assuming a line from the origin to each point, calculate the angle for each point using the atan2 
function. This function gives an inverse tangent in all 4 quadrants; that is, it gives the angle in 
the range of (-180o, 180o].  

Figure 9: Plot of I-Q Power Values for Different Targets 

 

https://en.wikipedia.org/wiki/Atan2
https://en.wikipedia.org/wiki/Atan2
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 Using those angles, calculate the angle between them by subtracting the angle of P2 from that 
of P1. This will be positive for counter-clockwise, negative for clockwise.  

 Get the ratio of the angle to that of a circle, 360o.  

 Multiply the ratio by the wavelength, 5.2 cm. 

 Divide that by 2 to account for the round-trip. 
This gives the distance traveled between samples. The clockwise vs. counter-clockwise change lets us 

give the number a positive sign (for movement away from the radar) or a negative sign (towards the 

radar). By summing up these distance values you can tell at any time the distance of the target relative 

to when you started keeping track. To emphasize, this doesn’t give us absolute distance from the radar 

but only with respect to some starting point. 

To illustrate, let’s pick points 1 and 7 from Figure 8 and calculate the angle as shown in Figure 10.  

 

Using the atan2 function, we get the values shown for angle of each point. The difference between the 

angles of point 7 and point 1 is -45o – 45o = -90o. Taking the absolute value of the ratio, |-90o / 360o| = 

0.25. The motion of the target therefore is 0.25 * 5.2 cm / 2 = 0.65 cm. Since the angle between the 

points is clockwise, the motion is towards the BumbleBee.  

Figure 10: The Angle between Two I-Q Points 

Wavelength Offset I Power Q Power Angle 

1/8 1.41 1.42 45o 

7/8 1.41 -1.42 -45o 
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If we sample the BumbleBee periodically over time, we can determine with high accuracy a target’s 

direction, speed and distance moved. 

3.3 Eliminating Stationary Objects 
Our discussion has assumed that there’s nothing in the BumbleBee’s field of view except the target. In 

reality, of course, there will be many other things such as hills, boulders, buildings, parked cars and the 

like. These are stationary but are still reflecting return waves back to the BumbleBee. We need to filter 

these out so that we’re only dealing with the return from the target.  

Suppose we have one moving target and one stationary object. The return pulse received by the 

BumbleBee will be a composite wave in which the returns of each are added together. Since the 

stationary object isn’t moving, its return wave will always be the same while the moving target’s wave 

will change. So if we can isolate the return wave we can subtract it from the composite and just be left 

with the target’s wave. Doing this directly would be hard at low power so instead we do it indirectly. We 

take the I power values over a sliding window of time and calculate the average. This gives us the I 

power of the stationary target in isolation and we can subtract it from the current composite I power to 

get the target’s I power. And, of course, we do the same thing with the Q power values. 

As an example, we suppose a static item whose return is at 3/8 cycle offset. A target moves away from 

the radar in 1/8 cycle increments. To keep it simple, we sample 8 times per second. In Figure 11 we have 

the results.  

The first pair of columns gives the I and Q power values for the static item. Because it’s not moving, 

these don’t change. The next triple of columns gives the offset and the I and Q power values for the 

target in isolation; that is, what they would be if there were no static item. The static item and the 

isolated target waves are added to give the composite wave, whose I and Q power values are shown in 

the next two columns.  

The composite means for the composite wave power values are calculated for the sliding window 

comprising the current sample power values and those of the preceding second. The filtered target 

power values are those of the composite minus the composite mean.  

The filtered target power values differ from the isolated target: they’re lower unless zero. But what 

matters are not the actual I and Q power values but rather the angle they form. As we see in the last 

columns, the angles formed by the filtered target values will converge over time to be the same as those 

formed by the target in isolation. Initially they will differ but within about a second they will be very 

close, which means we can accurately calculate motion and direction of the target in the presence of 

stationary items.  
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3.4 Effect of Noise and Multiple Targets 
We’ll cover noise and multiple targets briefly. Radio environments can be noisy—a WiFi router nearby, 

for example—and this can cause interference. However, when modulated by the reference wave, the 

mean of these signals is usually zero so they wind up having no net effect, just as for stationary targets. 

Figure 11: Filtering out Stationary Items 

Samp 

 Static Item  Isolated Target  Composite  Composite Mean  Filtered Target  Angles (degrees) 

 I Pwr Q Pwr  Offset I Pwr Q Pwr  I Pwr Q Pwr  I Pwr Q Pwr  I Pwr Q Pwr  
Isolated  

Target 
Filtered  

Target 

0  0.77 1.85  0/16 2 0  2.77 1.85  2.77 1.85  0 0  0 0 

1  0.77 1.85  1/16 1.85 0.77  2.61 2.61  2.69 2.23  -0.08 0.38  23 101 

2  0.77 1.85  2/16 1.41 1.41  2.18 3.26  2.52 2.57  -0.34 0.69  45 116 

3  0.77 1.85  3/16 0.77 1.85  1.53 3.7  2.27 2.85  -0.74 0.84  68 131 

4  0.77 1.85  4/16 0 2  0.77 3.85  1.97 3.05  -1.21 0.79  90 147 

5  0.77 1.85  5/16 -0.77 1.85  0 3.7  1.64 3.16  -1.64 0.54  112 162 

6  0.77 1.85  6/16 -1.41 1.41  -0.65 3.26  1.31 3.18  -1.96 0.09  135 177 

138   0.77 1.85   138/16 -1.41 -1.41   -0.65 0.43   0.74 1.9   -1.39 -1.47   -135 -133 

139  0.77 1.85  139/16 -0.77 -1.85  0 0  0.74 1.89  -0.74 -1.89  -112 -111 

140  0.77 1.85  140/16 0 -2  0.77 -0.15  0.74 1.88  0.03 -2.03  -90 -89 

141  0.77 1.85  141/16 0.77 -1.85  1.53 0  0.74 1.86  0.79 -1.86  -68 -67 

142  0.77 1.85  142/16 1.41 -1.41  2.18 0.43  0.75 1.85  1.43 -1.42  -45 -45 

143  0.77 1.85  143/16 1.85 -0.77  2.61 1.08  0.77 1.85  1.85 -0.77  -23 -23 

144  0.77 1.85  144/16 2 0  2.77 1.85  0.78 1.85  1.99 0  0 0 

145  0.77 1.85  145/16 1.85 0.77  2.61 2.61  0.79 1.85  1.82 0.76  23 23 

146  0.77 1.85  146/16 1.41 1.41  2.18 3.26  0.8 1.86  1.38 1.4  45 45 

147  0.77 1.85  147/16 0.77 1.85  1.53 3.7  0.81 1.88  0.72 1.82  68 68 

148  0.77 1.85  148/16 0 2  0.77 3.85  0.81 1.89  -0.04 1.96  90 91 

149  0.77 1.85  149/16 -0.77 1.85  0 3.7  0.8 1.9  -0.8 1.8  112 114 

150  0.77 1.85  150/16 -1.41 1.41  -0.65 3.26  0.79 1.91  -1.44 1.35  135 137 

151  0.77 1.85  151/16 -1.85 0.77  -1.08 2.61  0.78 1.91  -1.86 0.7  157 159 

152  0.77 1.85  152/16 -2 0  -1.23 1.85  0.77 1.91  -2 -0.07  180 -178 

153  0.77 1.85  153/16 -1.85 -0.77  -1.08 1.08  0.75 1.91  -1.84 -0.83  -157 -156 

154  0.77 1.85  154/16 -1.41 -1.41  -0.65 0.43  0.74 1.9  -1.39 -1.47  -135 -134 

155  0.77 1.85  155/16 -0.77 -1.85  0 0  0.74 1.89  -0.74 -1.89  -112 -111 

156  0.77 1.85  156/16 0 -2  0.77 -0.15  0.74 1.87  0.03 -2.03  -90 -89 

157  0.77 1.85  157/16 0.77 -1.85  1.53 0  0.74 1.86  0.79 -1.86  -68 -67 

158  0.77 1.85  158/16 1.41 -1.41  2.18 0.43  0.75 1.85  1.43 -1.42  -45 -45 

159  0.77 1.85  159/16 1.85 -0.77  2.61 1.08  0.77 1.85  1.85 -0.77  -23 -23 

160  0.77 1.85  160/16 2 0  2.77 1.85  0.78 1.85  1.99 0  0 0 
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Sometimes there can be two targets in range of the BumbleBee.  Usually one is stronger than the other 

so the dominant signal will prevail. It is often possible, using signal processing techniques that we don’t 

cover here, to separate the I-Q values and consider each target separately. 

4 Cut Detection 
Now that we know how to detect motion and direction, we’ll look at a way to do this efficiently. In what 

we’ve discussed so far we have to calculate and subtract angles for samples. This can give us fairly 

precise measurement of motion but it takes a fair amount of computing power for each sample. If we 

relax our requirements somewhat we can get useful information at much less cost. What we do is make 

use of the fact that every time a target moves ½ wavelength, the graph of the I-Q sample pairs for that 

wavelength go 360o, one full rotation. So we focus instead detecting times when a consecutive pair of 

samples crosses the negative I axis; each such crossing is called a cut and can be positive or negative. 

(The selection of that particular axis is customary but arbitrary.) In Figure 11, the sample pair (P, C2) 

makes a cut in the counter-clockwise (positive) direction for target movement towards the BumbleBee. 

 

If we were to swap the two samples, then (C2, P) would be a cut in the clockwise (negative) direction for 

movement away from the BumbleBee. Each full cut represents 2.6 cm of movement by the target 

relative to the BumbleBee so by doing cut analysis for successive pair sample pairs we can track 

direction and relative distance. 

Notice that we’re losing a bit of information since, in a series of samples, the first cut and the last cut 

will be less than full. But with enough samples, this doesn’t matter much. Why not just go ahead and 

keep track of sample-by-sample differences? There are two reasons. First, if we’re sampling 250 times 

per second (which is a reasonable rate), we only have 4 milliseconds to do the calculation; depending on 

the computer that’s doing the processing, that might take too long. Second, if we can switch to low 

Figure 12: Rotation and Cut 
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power when not processing, a more efficient processing algorithm allows more time to be spent in low 

power mode and that translates directly to longer battery life. 

4.1 Getting the Direction of Motion 
So what we need is a fast way to do cut analysis. First a bit of trig (don’t let this dismay you): if we know 

the angle between two vectors, the sine of the angle will be positive if the direction is counter-

clockwise, negative if clockwise and 0 if we can’t tell (the angle is either 0o or 180o). In Figure 11, sin 𝜃0 

is positive while sin 𝜃1 is negative. See https://www.mathsisfun.com/algebra/trig-four-quadrants.html 

for more about this. 

As a side note, in the case of a 0o angle, no motion has taken place and we don’t care. In the case of a 

180o angle—half a rotation—there is motion but it’s rather a lot. If the sample rate is 250 then it means 

that the target has moved 1.8 cm (half a wave) in 4 microseconds, or about 16 km/hr, which gives us an 

upper limit on the speed of the target that we can reliably track.  

How do we get the sine of the angle efficiently? Again, we can simplify. We don’t really need to know 

the sine itself, just whether it’s positive or negative. So now we can leverage the following fact: the 

magnitude of the cross-product of two vectors equals the product of the lengths of each vector times 

the sine of the angle between them. In mathematical notation, 

|𝑃 × 𝐶| =  ‖𝑃‖ ‖𝐶‖ sin 𝜃 

where P is the previous sample and C is the current one. In our case, the length of each vector is non-

negative so the product of the two is non-negative. If the right-hand side is positive, the sine must be 

positive and similarly for negative. So all we have to do now is compute the cross-product.  

For more information about this, see  

 https://www.youtube.com/watch?v=Tesvs6xCWZA  

 https://www.khanacademy.org/math/linear-

algebra/vectors_and_spaces/dot_cross_products/v/proof-relationship-between-cross-product-

and-sin-of-angle 

To summarize where we are: 

 If the cross-product is positive then the sine of the angle from the previous to the current 

sample is positive, rotation is counter-clockwise and the motion of the target is towards the 

BumbleBee. 

 If the cross-product is negative then the sine of the angle is negative, rotation is clockwise and 

the motion of the target is away from the BumbleBee. 

4.2 Checking for a Cut 
So to check for a cut we have to do check if the negative I axis has been crossed. A cut happens if: 

 The rotation is counter-clockwise, P.Q is negative and C.Q is positive. This is a cut representing 

motion of the target towards the BumbleBee.  

 The rotation is clockwise, P.Q is positive and C.Q is negative. This is a cut representing motion 

away from the BumbleBee. 

https://www.mathsisfun.com/algebra/trig-four-quadrants.html
https://www.youtube.com/watch?v=Tesvs6xCWZA
https://www.khanacademy.org/math/linear-algebra/vectors_and_spaces/dot_cross_products/v/proof-relationship-between-cross-product-and-sin-of-angle
https://www.khanacademy.org/math/linear-algebra/vectors_and_spaces/dot_cross_products/v/proof-relationship-between-cross-product-and-sin-of-angle
https://www.khanacademy.org/math/linear-algebra/vectors_and_spaces/dot_cross_products/v/proof-relationship-between-cross-product-and-sin-of-angle
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To determine the direction of rotation, we can calculate the sign of the cross product, whose formula is 

as follows: 
|𝑃 × 𝐶| = (𝑃. 𝑄 ∗ 𝐶. 𝐼) − (𝑃. 𝐼 ∗ 𝐶. 𝑄) 

This will either be positive (counter-clockwise rotation), negative (clockwise rotation) or zero. As earlier, 

we ignore the zero case. Note that avoid the use of trig functions, making this an efficient calculation. 

4.3 Examples 
Let’s see how this works out for the values in Figure 11. P is the same in each case.  

Previous Current 
Cross Product Rotation direction Cut? 

P.I P.Q  C.I C.Q 

2 4 

C0 -1 3 -14 Counter-clockwise No 

C1 3 -1 10 Clockwise No 

C2 -3 -1 -2 Counter-clockwise Yes 

Here, 

 (P, C0) doesn’t cross the I axis at all.  

 (P,C1) crosses the I axis, but it is the positive side.  

 (P,C2) crosses the negative I axis. The direction is counter-clockwise, P.Q = 4 is positive and C2.Q 
= -1 is negative.  

Hence in the last case, there is a cut indicating motion towards the BumbleBee. 

5 Displacement Detection 
Now that we know how to determine cut and direction, we can detect displacement which, as we 

mentioned earlier, is motion in one direction, filtering out other kinds of motion such as a bush blowing 

back and forth. The approach is simple. Over a window of time—typically one second—sum up the cuts. 

Motion towards the radar is negative, away is positive. So if we add them up for a second, a sufficiently 

large absolute value (positive or negative) will indicate displacement. A person, for example, that’s 

walking towards the radar will generate a succession of negative cuts. A bush nearby can be also 

generating cuts but they will be a mixture of positive and negative as the bush blows back and forth: 

these will tend to cancel each other out. So we can set a minimum cumulative cuts threshold of, say, 9 

to detect displacement. If the sum of the cuts over the window has an absolute value of at least 9 then 

displacement occurs. 

There is a complication however: we have to deal with environments in which there’s nothing around so 

there is no return. In this case, the BumbleBee will produce results that are affected primarily by the 

noise in the signal. This can result in low values that indicate cuts and falsely detect displacement. To 

handle this, there is a second parameter that can be used: noise threshold. If a noise threshold value of, 

say, 7 is used, then the absolute values of both the I and the Q must be at least 7 before evaluating 

whether there is a cut or not.  

The values for minimum cumulative cuts and noise threshold that are appropriate depend in part on 

such things as the resolution of the ADC used to read the BumbleBee’s output and the degree to which 

the BumbleBee’s output voltage range is matched by the ADC’s input range. They will also depend on 

the environment around the BumbleBee. Placement in a bare environment (such as a large open dirt 

field) will result in more false alarms from noise than a residential environment that has bushes, trees, a 

building and the like to provide a return. As you work with the BumbleBee in your particular 
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environment, you’ll need to experiment with different values of minimum cumulative cuts and noise 

thresholds to find a balance between false positives (false alarms) and false negatives (failure to detect 

displacement).  

6 Summary 
We’ve covered the basics of Doppler pulsed radars and have shown how to use the BumbleBee to 

detect the amount of target motion and direction by using the in-phase and quadrature power values. 

To simplify motion detection we use the idea of a cut to track the number and direction of cuts that 

represent rotation cuts on the graph. The BumbleBee is a low-power device and, with the optimizations 

of cut processing, direction and amount of motion can be done with low power on a mote-scale device. 

Together, a BumbleBee paired with a low-power mote (microcontroller) can be used for an extended 

period of time to detect and track motion in a setting where batteries are required. 


	1 The Limitations of Low Power
	2 Relative Distance
	3 How the BumbleBee Works
	3.1 Getting the Basic Information
	3.2 Resolving Target Direction, Distance and Size
	3.3 Eliminating Stationary Objects
	3.4 Effect of Noise and Multiple Targets

	4 Cut Detection
	4.1 Getting the Direction of Motion
	4.2 Checking for a Cut
	4.3 Examples

	5 Displacement Detection
	6 Summary

